Устойчивость “в малом” и “ в большом”. Связь критерия Попова с методами Ляпунова.

Пусть линейная система устойчива в секторе (0, К)-см рис. 5.9; начальная часть нелинейной характеристики, соответствующая -Х 2 <X<X 1 , лежит внутри этого сектора, а при выходе х за указанные пределы выходит за пределы сектора. Очевидно, что в данном случае нельзя утверждать, что равновесие системы будет абсолютно устойчиво, т.е. устойчиво в целом при любых f(l), но мы можем утверждать, что при таких SUP|F(L)|< ¥ , которые вызывают отклонение х, не выходящее за пределы (-х 2 , х 1 ), будет имеет место устойчивость положения равновесия в большом и, конечно, устойчивость в малом.

С помощью критерия Попова легко можно пояснить, когда применим первый метод Ляпунова. Заменим нелинейную характеристику в точке равновесия касательной. Если линейная система устойчива (а не находится на границе устойчивости), то небольшой подъем луча 0К в положение 0К 1 не нарушит устойчивости, то при этом начальная часть нелинейной характеристики попадает внутрь сектора (0, К 1 ), и равновесие нелинейной системы будет устойчивым в малом.

Если же мы имеем критический случай, то касательная является границей сектора, внутри которого линейная система устойчива, и мы не можем судить об устойчивости равновесия нелинейной системы.

Функция Ляпунова может быт построена различными способами для одной и той же системы. Для каждой такой частной функции Ляпунова можно построить свою область устойчивости в пространстве параметров, но каждая такая область не будет истинной областью устойчивости, поскольку второй метод Ляпунова дает лишь достаточное условие устойчивости.

Р. Калман показал, что область устойчивости, даваемая критерием Попова, будет огибающей для всех областей устойчивости, определяемых функциями Ляпунова вида “квадратичная форма плюс нелинейность”, т.е. будет шире и ближе к истинной области устойчивости, чем любая из областей устойчивости, определяемая по функции Ляпунова заданной формы.

Большим преимуществом метода Попова является то, что он без особых затруднений распространяется на системы с запаздыванием и распределенными параметрами, а также на некоторые классы импульсных систем управления.

Рассмотренные критерии - квадратичный, вытекающий и него круговой и критерий Попова - различаются степенью подробности учета специфических особенностей нелинейных характеристик, что отражается на ширине области устойчивости, даваемой тем или иным критерием, т.е. лучшим критерием является тот, который дает более широкую область устойчивости.

Если сравнивать круговой критерий с методом Попова, то первый дает более узкую область устойчивости, если исследуется класс стационарных нелинейностей, но зато охватывает более широкий класс нелинейностей.