ОПТИКА

5. Дифракция света. Дифракционная решётка

Явление дифракции. Дифракция волн заключается в огибании волнами препятствий или в отклонении волн в область геометрической тени при прохождении через отверстия при условии , что линейные размеры этих препятствий порядка или меньше длины волны. Тип волн не имеет значения: дифракция наблюдается и для звука, и для света, и для любых других волновых процессов .

Наблюдение дифракции световых волн возможно только тогда, когда размеры препятствий будут порядка 10 -6 -10 -7 м (для видимого света). Когда размеры щели сравниваются по порядку с длиной волны, щель становится источником вторичных сферических волн, интерференция которых и определяет картину распределения интенсивности за щелью. В частности, свет проникает в геометрически недоступную область. Таким образом, в видимой области спектра наблюдать дифракцию нелегко. Для электромагнитных волн в других диапазонах дифракция наблюдается повседневно, везде и всюду, так как, если бы не это явление, мы не смогли бы, например, слушать радио в закрытых помещениях.

Дифракция на щели . Дифракционная картина, наблюдаемая на экране, поставленном за перегородкой с одной щелью, может быть рассчитана на основании принципа суперпозиции и интерференции волн. Пусть на щель падает монохроматический пучок света длиной l . Размеры щели d сравнимы с l : d ~ l . Расстояние от щели до экрана L >> d . Каждая точка щели является, согласно принципу Гюйгенсa, источником вторичной сферической волны . Эти волны интерферируют между собой, так что истинное положение фронта результирующей волны является огибающей вторичных волн с учетом их интерференции. Рассмотрим наложение двух таких волн, идущих от середины щели и от одного из краев, и вычислим разность хода таких волн в произвольной точке экрана. Из простых геометрических соображений с учетом малости угла q можно получить, что разность хода этих двух волн равна

где y - координата точки наблюдения на экране. Интерференция двух волн будет деструктивной , если разность хода будет равна целому числу полуволн m( l /2) . Отсюда находятся координаты тех точек на экране, где возникают темные полосы:

Распределение интенсивности света в дифракционной картине имеет резкий максимум. Следует отметить, что измерения положения минимумов позволяют (при известных параметрах d L ) определить длину волны света l .

Дифракционная решетка . Более совершенным прибором, позволяющим проводить спектральный анализ света, является дифракционная решетка . Это устройство бывает двух типов: пропускающие (прозрачные щели, чередующиеся с непрозрачными промежутками) и отражательные (участки, отражающие свет, чередуются с участками, рассеивающими свет). И в том и в другом случае на поверхность наносится большое количество щелей или рассеивающих свет полос, причем число штрихов доходит до 10 3 на 1 мм, а общее число штрихов ~ 10 5 . Расстояние между двумя соседними щелями называется периодом решетки. Две волны, идущие от краев двух соседних щелей, интерферируют конструктивно, если

Ясно, что в этом случае волны от всех щелей будут усиливать друг друга (разность хода, определяемая точками, отстоящими друг от друга на целое число периодов решетки, не нарушает условия конструктивной интерференции), и после фокусировки всех лучей с помощью линзы на экране возникнут максимумы интенсивности. Таким образом, предыдущая формула определяет положение максимумов дифракционной картины, создаваемой дифракционной решеткой.

Положение всех максимумов, кроме главного максимума, отвечающего m = 0, зависит от длины волны. Поэтому если на решетку падает белый свет, то он разлагается в спектр. С помощью дифракционной решетки можно очень точно измерять длину волны, так как при большом числе щелей области максимумов интенсивности сужаются, превращаясь в тонкие яркие полосы, а расстояния между максимумами (ширина темных полос) растут.